Advertisements
Advertisements
Question
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
Options
`6/25`
`24/25`
`4/5`
`-24/25`
Solution
(d) `-24/25`
Let \[\cos^{- 1} \left( - \frac{3}{5} \right) = x, 0 \leq x \leq \pi\]
Then,
`cosx=-3/5`
\[\therefore \sin{x} = \sqrt{1 - \cos^2 x} = \sqrt{1 - \left( - \frac{3}{5} \right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}\]
Now,
\[\sin\left\{ 2 \cos^{- 1} \left( - \frac{3}{5} \right) \right\} = \sin\left( 2x \right)\]
\[ = 2\sin{x} \cos{x}\]
\[ = 2 \times \frac{4}{5} \times \frac{- 3}{5}\]
\[ = - \frac{24}{25}\]
APPEARS IN
RELATED QUESTIONS
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`sin^-1(sin pi/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
tanx is periodic with period ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`