English

If sin [cot−1 (x+1)] = cos(tan−1x), then find x. - Mathematics

Advertisements
Advertisements

Question

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

Solution

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`

`=cos{cos^(-1)(1/sqrt(1+x^2))}  [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`

`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`

`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`

`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`

Squaring both sides, we get

1+x2=x2+2x+2

2x+2=1

x=1/2

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×