Advertisements
Advertisements
Question
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Solution
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`
`=cos{cos^(-1)(1/sqrt(1+x^2))} [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`
`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`
`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`
`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`
Squaring both sides, we get
⇒1+x2=x2+2x+2
⇒2x+2=1
⇒x=−1/2
APPEARS IN
RELATED QUESTIONS
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]