English

Write the Value of Sin−1 \[\Left( \Sin( -{600}\Circ) \Right)\]. - Mathematics

Advertisements
Advertisements

Question

Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 

Short Note

Solution

We know that

\[\sin^{- 1} \left(\sin{x} \right) = x\]

Now,

\[\sin^{- 1} \left\{ \sin\left( - {600}^\circ \right) \right\} = \sin^{- 1} \left\{ \sin\left( {720}^\circ - {600}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {120}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {180}^\circ - {120}^\circ \right) \right\} \left[ \because \sin{x} = \sin\left( \pi - x \right) \right]\]
\[ = \sin^{- 1} \left( \sin {60}^\circ \right)\]
\[ = {60}^\circ\]

∴ \[\sin^{- 1} \left\{ \sin\left( - {600}^\circ \right) \right\} = {60}^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 14 | Page 117

RELATED QUESTIONS

Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  2/3=1/2tan^-1  12/5`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of sin (cot−1 x).


Write the value of sin1 (sin 1550°).


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×