English

Solve the Following Equation For X: `Tan^-1((X-2)/(X-4))+Tan^-1((X+2)/(X+4))=Pi/4` - Mathematics

Advertisements
Advertisements

Question

Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`

Solution

We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

∴ `tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`

⇒ `tan^-1(((x-2)/(x-4)+(x+2)/(x+4))/(1-(x-2)/(x-4)xx(x+2)/(x+4)))=pi/4`

⇒ `tan^-1(((x^2+2x-8+x^2-2x-8)/((x-4)(x+4)))/((x^2-16-x^2+4)/((x-4)(x+4))))=pi/4`

⇒ `(2x^2-16)/-12=tan  pi/4`

⇒ `(2x^2-16)/-12=1`

⇒ 2x2 - 16 = -12

⇒ 2x2 = 4

⇒ x2 = 2

⇒ `x=+-sqrt2`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.11 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.08 | Page 82

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`sec(sin^-1  12/13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of sin (cot−1 x).


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×