Advertisements
Advertisements
Question
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
Solution
Given that `cos^-1 (3/5 cosx + 4/5 sin x)`
Put `3/5` = cos y
∴ `sqrt(1 - cos^2y)` = sin y
⇒ `sqrt(1 - 9/25)` = sin y
⇒ `4/5` = sin y
∴ `cos^-1 [3/5 cos x + 45 sin x]` = cos–1[cos y cos x + sin y sin x]
= cos–1 [cos (y – x)]
= y – x
= `tan^-1 4/3 - x` ......`[tan y = siny/cosy = 4/3]`
APPEARS IN
RELATED QUESTIONS
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Write the range of tan−1 x.
Write the value of cos−1 (cos 6).
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to