Advertisements
Advertisements
Question
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Solution
`cos^-1x + cos^-1y =pi/4`
⇒ `pi/2-sin^-1x+pi/2-sin^-1y=pi/4` `[thereforecos^-1x=pi/2-sin^-1x]`
⇒ `pi-(sin^-1x+sin^-1y)=pi/4`
⇒ `sin^-1x+sin^-1y=(3pi)/4`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The period of the function f(x) = tan3x is ____________.