Advertisements
Advertisements
Question
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Solution
LHS = `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan theta/2)^2)}` `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`
`=cos^-1{(1-(a-b)/(a+b)tan^2 theta/2)/(1+(a-b)/(a+b)tan^2 theta/2)}`
`=cos^-1{((a+b)-(a-b)tan^2 theta/2)/((a+b)+(a-b)tan^2 theta/2)}`
`=cos^-1{(a+b-atan^2 theta/2+btan^2 theta/2)/(a+b+atan^2 theta/2-btan^2 theta/2)}`
`=cos^-1{(a(1-tan^2 theta/2)+b(1+tan^2 theta/2))/(a(1+tan^2 theta/2)+b(1-tan^2 theta/2))}`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b((1+tan^2 theta/2)/(1+tan^2theta/2)))/(a((1+tan^2 theta/2)/(1+tan^2 theta/2))+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}` `["Dividing" N^r and D^r by 1+tan^2 theta/2]`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b)/(a+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}`
`=cos^-1{(acos theta+b)/(a+bcostheta)}`=RHS
APPEARS IN
RELATED QUESTIONS
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cot{sec^-1(-13/5)}`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`