English

Prove that `2tan^-1(Sqrt((A-b)/(A+B))Tan Theta/2)=Cos^-1((A Costheta+B)/(A+B Costheta))` - Mathematics

Advertisements
Advertisements

Question

Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`

Solution

LHS = `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan  theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan  theta/2)^2)}`     `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`

`=cos^-1{(1-(a-b)/(a+b)tan^2  theta/2)/(1+(a-b)/(a+b)tan^2  theta/2)}`

`=cos^-1{((a+b)-(a-b)tan^2  theta/2)/((a+b)+(a-b)tan^2  theta/2)}`

`=cos^-1{(a+b-atan^2  theta/2+btan^2  theta/2)/(a+b+atan^2  theta/2-btan^2  theta/2)}`

`=cos^-1{(a(1-tan^2  theta/2)+b(1+tan^2  theta/2))/(a(1+tan^2  theta/2)+b(1-tan^2  theta/2))}`

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b((1+tan^2  theta/2)/(1+tan^2theta/2)))/(a((1+tan^2  theta/2)/(1+tan^2  theta/2))+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`       `["Dividing"   N^r and D^r  by  1+tan^2  theta/2]` 

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b)/(a+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`

`=cos^-1{(acos  theta+b)/(a+bcostheta)}`=RHS

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 9 | Page 116

RELATED QUESTIONS

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cot{sec^-1(-13/5)}`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin (cot−1 x).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×