Advertisements
Advertisements
Question
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Solution
`cos^-1sqrt3x+cos^-1x=pi/2`
⇒`cos^-1[sqrt3x xx x-sqrt(1-(sqrt3x)^2)sqrt(1-x^2)]=pi/2` `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`
⇒ `cos^-1[sqrt3x^2-sqrt(1-3x^2)sqrt(1-x^2)]=pi/2`
⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)=cos pi/2`
⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)`
⇒ `3x^4=(1-3x^2)(1-x^2)`
⇒ `3x^4=1-3x^2+3x^4-x^2`
⇒ `4x^2=1`
⇒ `x^2=1/4`
⇒ `x=+-1/2`
APPEARS IN
RELATED QUESTIONS
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin3)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cosec{cot^-1(-12/5)}`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
tanx is periodic with period ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.