Advertisements
Advertisements
प्रश्न
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
उत्तर
`cos^-1sqrt3x+cos^-1x=pi/2`
⇒`cos^-1[sqrt3x xx x-sqrt(1-(sqrt3x)^2)sqrt(1-x^2)]=pi/2` `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`
⇒ `cos^-1[sqrt3x^2-sqrt(1-3x^2)sqrt(1-x^2)]=pi/2`
⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)=cos pi/2`
⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)`
⇒ `3x^4=(1-3x^2)(1-x^2)`
⇒ `3x^4=1-3x^2+3x^4-x^2`
⇒ `4x^2=1`
⇒ `x^2=1/4`
⇒ `x=+-1/2`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`sin^-1x=pi/6+cos^-1x`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If sin−1 x − cos−1 x = `pi/6` , then x =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The period of the function f(x) = tan3x is ____________.