Advertisements
Advertisements
प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
उत्तर
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4`
`=>tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=tan^(-1)1`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1-tan^(-1)((x+2)/(x+3))`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(1-(x+2)/(x+3))/(1+(x+2)/(x+3))`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(x+3-x-2)/(x+3+x+2)`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1/(2x+5)`
`=>(x-2)/(x-3)=1/(2x+5)`
`=>(x-2)(2x+5)=x-3`
`=>2x^2-4x+5x-10=x-3`
`=>2x^2=7`
`=>x=+-sqrt(7/2)`
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos12)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.
Find the value of `sin^-1(cos((33π)/5))`.