हिंदी

Solve the following for x : tan^−1((x−2)/(x−3))+tan^−1((x+2)/(x+3))=π/4,|x|<1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`

उत्तर

 

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4`

`=>tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=tan^(-1)1`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1-tan^(-1)((x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(1-(x+2)/(x+3))/(1+(x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(x+3-x-2)/(x+3+x+2)`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1/(2x+5)`

`=>(x-2)/(x-3)=1/(2x+5)`

`=>(x-2)(2x+5)=x-3`

`=>2x^2-4x+5x-10=x-3`

`=>2x^2=7`

`=>x=+-sqrt(7/2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Patna Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1(cos12)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cot(tan^-1a+cot^-1a)`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of cos−1 (cos 1540°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×