हिंदी

If Cos − 1 X 3 + Cos − 1 Y 2 = θ 2 , Then 4 X 2 − 12 X Y Cos θ 2 + 9 Y 2 = (A) 36 (B) 36 − 36 Cos θ (C) 18 − 18 Cos θ (D) 18 + 18 Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]

विकल्प

  • 36

  • 36 − 36 cos θ

  • 18 − 18 cos θ

  • 18 + 18 cos θ

MCQ

उत्तर

(c) 18 − 18 cosθ

We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{3}\frac{y}{2} - \sqrt{1 - \frac{x^2}{9}}\sqrt{1 - \frac{y^2}{4}} \right) = \frac{\theta}{2}\]
\[ \Rightarrow \frac{xy}{6} - \sqrt{\frac{9 - x^2}{9}}\sqrt{\frac{4 - y^2}{4}} = \cos\frac{\theta}{2}\]
\[ \Rightarrow xy - 6\cos\frac{\theta}{2} = \sqrt{9 - x^2}\sqrt{4 - y^2}\]
Squaring both the sides, we get
\[x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = \left( 9 - x^2 \right)\left( 4 - y^2 \right)\]
\[ \Rightarrow x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = 36 - 9 y^2 - 4 x^2 + x^2 y^2 \]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36 - 36 \cos^2 \frac{\theta}{2}\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36\left\{ 1 - \left( \frac{\cos\theta + 1}{2} \right) \right\} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 18 - 18\cos\theta\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 13 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×