Advertisements
Advertisements
प्रश्न
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
विकल्प
36
36 − 36 cos θ
18 − 18 cos θ
18 + 18 cos θ
उत्तर
(c) 18 − 18 cosθ
We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{3}\frac{y}{2} - \sqrt{1 - \frac{x^2}{9}}\sqrt{1 - \frac{y^2}{4}} \right) = \frac{\theta}{2}\]
\[ \Rightarrow \frac{xy}{6} - \sqrt{\frac{9 - x^2}{9}}\sqrt{\frac{4 - y^2}{4}} = \cos\frac{\theta}{2}\]
\[ \Rightarrow xy - 6\cos\frac{\theta}{2} = \sqrt{9 - x^2}\sqrt{4 - y^2}\]
Squaring both the sides, we get
\[x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = \left( 9 - x^2 \right)\left( 4 - y^2 \right)\]
\[ \Rightarrow x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = 36 - 9 y^2 - 4 x^2 + x^2 y^2 \]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36 - 36 \cos^2 \frac{\theta}{2}\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36\left\{ 1 - \left( \frac{\cos\theta + 1}{2} \right) \right\} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 18 - 18\cos\theta\]
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .