Advertisements
Advertisements
प्रश्न
Evaluate:
`sec{cot^-1(-5/12)}`
उत्तर
`sec{cot^-1(-5/12)}=sec{pi-cot^-1(5/12)}`
`=-sec{cot^-1(5/12)}`
`=-sec{cos^-1[1/(1+(12/5)^2)]}`
`=-sec{cos^-1(5/13)}`
`=-sec{sec^-1
(13/5)}`
`=-13/5`
APPEARS IN
संबंधित प्रश्न
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`tan^-1 2/3=1/2tan^-1 12/5`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin−1 (sin 1550°).
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.