हिंदी

Evaluate: `Sec{Cot^-1(-5/12)}` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`sec{cot^-1(-5/12)}`

उत्तर

`sec{cot^-1(-5/12)}=sec{pi-cot^-1(5/12)}`

`=-sec{cot^-1(5/12)}`

`=-sec{cos^-1[1/(1+(12/5)^2)]}`

`=-sec{cos^-1(5/13)}`

`=-sec{sec^-1
(13/5)}`

`=-13/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 1.2 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`tan^-1  2/3=1/2tan^-1  12/5`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin1 (sin 1550°).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×