Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
उत्तर
Let x = tan θ
Now,
`tan^-1{(sqrt(1+x^2)-1)/x}=tan^-1{(sqrt(1+tan^2theta)-1)/tantheta}`
`=tan^-1 {(sqrt(sec^2theta)-1)/tantheta}`
`=tan^-1{(sectheta-1)/tantheta}`
`=tan^-1{(1-costheta)/sintheta}`
`=tan^-1{(2sin^2 theta/2)/(2sin theta/2cos theta/2)}`
`=tan6-1{tan(theta/2)}`
`=theta/2`
`=(tan^-1x)/2`
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`