Advertisements
Advertisements
Question
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Solution
Let x = tan θ
Now,
`tan^-1{(sqrt(1+x^2)-1)/x}=tan^-1{(sqrt(1+tan^2theta)-1)/tantheta}`
`=tan^-1 {(sqrt(sec^2theta)-1)/tantheta}`
`=tan^-1{(sectheta-1)/tantheta}`
`=tan^-1{(1-costheta)/sintheta}`
`=tan^-1{(2sin^2 theta/2)/(2sin theta/2cos theta/2)}`
`=tan6-1{tan(theta/2)}`
`=theta/2`
`=(tan^-1x)/2`
APPEARS IN
RELATED QUESTIONS
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of sin (cot−1 x).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.