English

Write the Following in the Simplest Form: `Tan^-1{(Sqrt(1+X^2)-1)/X},X !=0` - Mathematics

Advertisements
Advertisements

Question

Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`

Solution

Let x = tan θ

Now,

`tan^-1{(sqrt(1+x^2)-1)/x}=tan^-1{(sqrt(1+tan^2theta)-1)/tantheta}`

`=tan^-1  {(sqrt(sec^2theta)-1)/tantheta}`

`=tan^-1{(sectheta-1)/tantheta}`

`=tan^-1{(1-costheta)/sintheta}`

`=tan^-1{(2sin^2  theta/2)/(2sin  theta/2cos  theta/2)}`

`=tan6-1{tan(theta/2)}`

`=theta/2`

`=(tan^-1x)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.04 | Page 43

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of sin (cot−1 x).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×