Advertisements
Advertisements
Question
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Solution
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^(-1)(1-x)=pi/2+2sin^-1 x`
`=>(1-x)=sin(pi/2+sin^-1 x)`
`=>(1-x)=cos(2sin^-1 x)`
`=>(1-x)=cos(cos^-1 (1-2x^2))`
`=>(1-x)=(1-2x^2)`
`=>2x^2-x=0`
`=>x=0, x=1/2`
APPEARS IN
RELATED QUESTIONS
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The period of the function f(x) = tan3x is ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.