हिंदी

Solve the following for x: sin^−1(1−x)−2 sin^−1 x=π/2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`

उत्तर

 

`sin^(-1)(1-x)-2sin^-1 x=pi/2`

`sin^(-1)(1-x)=pi/2+2sin^-1 x`

`=>(1-x)=sin(pi/2+sin^-1 x)`

`=>(1-x)=cos(2sin^-1 x)`

`=>(1-x)=cos(cos^-1 (1-2x^2))`

`=>(1-x)=(1-2x^2)`

`=>2x^2-x=0`

`=>x=0, x=1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×