Advertisements
Advertisements
प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
उत्तर
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^(-1)(1-x)=pi/2+2sin^-1 x`
`=>(1-x)=sin(pi/2+sin^-1 x)`
`=>(1-x)=cos(2sin^-1 x)`
`=>(1-x)=cos(cos^-1 (1-2x^2))`
`=>(1-x)=(1-2x^2)`
`=>2x^2-x=0`
`=>x=0, x=1/2`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.