हिंदी

Solve the Following Equation For X: `Tan^-1 (X-2)/(X-1)+Tan^-1 (X+2)/(X+1)=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`

उत्तर

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`

⇒ `tan^-1(((x-2)/(x-1)+(x+2)/(x+1))/(1-((x-2)/(x-1))((x+2)/(x+1))))=pi/4`       `[tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`

⇒ `((((x-2)(x+1)+(x-1)(x+2))/((x-1)(x+1))))/((((x-1)(x+1)-(x-2)(x+2))/((x-1)(x+1))))=tan (pi/4)`

⇒ `((x-2)(x+1)+(x-1)(x+2))/((x-1)(x+1)-(x-2)(x+2))=1`

⇒ `(x^2-x-2+x^2+x-2)/((x^2-1)-(x^2-4))=1`

⇒ `(2x^2-4)/3=1`

⇒ `2x^2-4=3`

⇒ `2x^2=7`

⇒ `x^2=7/2`

∴ `x=+-sqrt(7/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.1 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin4)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the range of tan−1 x.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos−1 (cos 6).


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×