Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
उत्तर
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
⇒ `tan^-1(((x-2)/(x-1)+(x+2)/(x+1))/(1-((x-2)/(x-1))((x+2)/(x+1))))=pi/4` `[tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`
⇒ `((((x-2)(x+1)+(x-1)(x+2))/((x-1)(x+1))))/((((x-1)(x+1)-(x-2)(x+2))/((x-1)(x+1))))=tan (pi/4)`
⇒ `((x-2)(x+1)+(x-1)(x+2))/((x-1)(x+1)-(x-2)(x+2))=1`
⇒ `(x^2-x-2+x^2+x-2)/((x^2-1)-(x^2-4))=1`
⇒ `(2x^2-4)/3=1`
⇒ `2x^2-4=3`
⇒ `2x^2=7`
⇒ `x^2=7/2`
∴ `x=+-sqrt(7/2`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the range of tan−1 x.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 6).
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.