Advertisements
Advertisements
प्रश्न
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
उत्तर
We know that
\[\cos^{- 1} x = 2 \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}}\]
\[ \tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]
\[\therefore \sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \sin\left( \frac{1}{2}2 \tan^{- 1} \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \frac{1}{3} \right)\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{1}{3}}{\sqrt{1 + \frac{1}{9}}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{1}{\sqrt{10}} \right)\]
\[ = \frac{1}{\sqrt{10}} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]
∴ \[\sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \frac{1}{\sqrt{10}}\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
`5tan^-1x+3cot^-1x=2x`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.