हिंदी

Evaluate Sin \[\Left( \Frac{1}{2} \Cos^{- 1} \Frac{4}{5} \Right)\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]

उत्तर

We know that

\[\cos^{- 1} x = 2 \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}}\]
\[ \tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]

\[\therefore \sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \sin\left( \frac{1}{2}2 \tan^{- 1} \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \frac{1}{3} \right)\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{1}{3}}{\sqrt{1 + \frac{1}{9}}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{1}{\sqrt{10}} \right)\]
\[ = \frac{1}{\sqrt{10}} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]

∴ \[\sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \frac{1}{\sqrt{10}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 17 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sin(cos^-1  5/13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


`5tan^-1x+3cot^-1x=2x`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×