Advertisements
Advertisements
प्रश्न
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
उत्तर
We know that the maximum value of `sin^-1x. sin^-1y, sin^-1z is pi/2` and minimum value of `sin^-1x, sin^-1y, sin^-1z is pi/2`
Now,
For maximum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(pi/2)^2+(pi/2)^2+(pi/2)^2`
`=3/4pi^2=`RHS
and For minimum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(-pi/2)^2+(-pi/2)^2+(-pi/2)^2`
`=3/4pi^2` = RHS
Now, For maximum value
`sin^-1x=pi/2,sin^-1y=pi/2,sin^-1z=pi/2`
⇒ `x = sin pi/2,y=sin pi/2, z = sin pi/2`
⇒ x = 1, y = 1, z = 1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
and for minimum value
`sin^-1x=-pi/2,sin^-1y=-pi/2,sin^-1z=-pi/2`
⇒ `x=sin(-pi/2),y=sin(-pi/2),z=sin(-pi/2)`
⇒ x = -1, y = -1, z = -1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin(sin^-1 1/5+cos^-1x)=1`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
tanx is periodic with period ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.