हिंदी

Write the Following in the Simplest Form: `Tan^-1{(Sqrt(1+X^2)+1)/X},X !=0` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`

उत्तर

Let x = tan θ

Now,

`tan^-1{(sqrt(1+x^2)+1)/x}=tan^-1{(sqrt(1+tan^2theta)+1)/tantheta}`

`=tan^-1{(sqrt(sec^2theta)+1)/tantheta}`

`=tan^-1{(sectheta+1)/tantheta}`

`=tan^-1{(costheta+1)/sintheta}`

`=tan^-1{(2cos^2  theta/2)/(2sin  theta/2cos  theta/2)}`

`=tan^-1{cot  theta/2}`

`=tan^-1{tan(pi/2-theta/2)}`

`=pi/2-(tan^-1x)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.05 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×