Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
उत्तर
Let x = tan θ
Now,
`tan^-1{(sqrt(1+x^2)+1)/x}=tan^-1{(sqrt(1+tan^2theta)+1)/tantheta}`
`=tan^-1{(sqrt(sec^2theta)+1)/tantheta}`
`=tan^-1{(sectheta+1)/tantheta}`
`=tan^-1{(costheta+1)/sintheta}`
`=tan^-1{(2cos^2 theta/2)/(2sin theta/2cos theta/2)}`
`=tan^-1{cot theta/2}`
`=tan^-1{tan(pi/2-theta/2)}`
`=pi/2-(tan^-1x)/2`
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`tan(cos^-1 8/17)`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
The value of sin `["cos"^-1 (7/25)]` is ____________.