हिंदी

If `Cos^-1 X/2+Cos^-1 Y/3=Alpha,` Then Prove That `9x^2-12xy Cosa+4y^2=36sin^2a.` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`

उत्तर

We know

`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`

Now,

`cos^-1  x/2+cos^-1  y/3=alpha,`

⇒ `cos^-1[x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`

⇒ `x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`

⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`

⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`

⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha`      [Squaring both sides]

⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`

⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36-36cos^2alpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36sin^2alpha`
 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 1 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×