Advertisements
Advertisements
प्रश्न
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
उत्तर
We know
`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`
Now,
`cos^-1 x/2+cos^-1 y/3=alpha,`
⇒ `cos^-1[x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`
⇒ `x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`
⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`
⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`
⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha` [Squaring both sides]
⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`
⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`
⇒ `9x^2-12xy cosalpha+4y^2=36-36cos^2alpha`
⇒ `9x^2-12xy cosalpha+4y^2=36sin^2alpha`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`