हिंदी

`4sin^-1x=Pi-cos^-1x` - Mathematics

Advertisements
Advertisements

प्रश्न

`4sin^-1x=pi-cos^-1x`

उत्तर

`4sin^-1x=pi-cos^-1x`

⇒ `4sin^-1x=pi-(pi/2-sin^-1x)`      `[becausecos^-1x=pi/2-sin^-1x]`

⇒ `4sin^-1x=pi/2+sin^-1x`

⇒ `3sin^-1x=pi/2`

⇒ `sin^-1x=pi/6`

⇒ `x=sin  pi/6=1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 8 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`sin^-1(sin  pi/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find the domain of `sec^(-1)(3x-1)`.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×