Advertisements
Advertisements
प्रश्न
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
उत्तर
We have
\[\left| x \right| \leq 1\]
\[ \Rightarrow \pm x \leq 1\]
\[ \Rightarrow x \leq 1 or - x \leq 1\]
\[ \Rightarrow x \leq 1 or x \geq - 1\]
\[ \Rightarrow x \in \left[ - 1, 1 \right]\]
Now,
\[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right) = \cos\left( \frac{\pi}{2} \right) \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The period of the function f(x) = tan3x is ____________.
Find the value of `sin^-1(cos((33π)/5))`.