हिंदी

Write the value of tan(2tan^(-1)(1/5)) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`

उत्तर

`2tan^(-1)x=tan^(-1)(2x)/(1-x^2)`

`therefore 2 tan^(-1)(1/5)=tan^(-1)((2(1/5))/(1-(1/5)^2))=tan^(-1)(5/12)`

Thus `tan (2tan^(-1)(1/5))=tan(tan^(-1)(5/12))=5/12`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin (cot−1 x).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×