हिंदी

Prove that `Tan^-1((1-x^2)/(2x))+Cot^-1((1-x^2)/(2x))=Pi/2` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`

उत्तर

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`

LHS = `tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))`

  `=tan^-1((1-x^2)/(2x))+pi/2-tan^-1((1-x^2)/(2x))`     `[becausetan^-1x+cot^-1x=pi/2]`

`=pi/2=`  RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 4.1 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin12)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×