Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cos^-1{cos (5pi)/4}`
उत्तर
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1{cos (5pi)/4}=cos^-1{cos(2pi-(3pi)/4)}`
`=cos^-1{cos((3pi)/4)}`
`=(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cos(tan^-1 3/4)`
`4sin^-1x=pi-cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.