Advertisements
Advertisements
प्रश्न
What is the principal value of `sin^-1(-sqrt3/2)?`
उत्तर
Let `y=sin^-1(-sqrt3/2)`
Then,
\[\sin{y} = - \frac{\sqrt{3}}{2} = \sin\left( - \frac{\pi}{3} \right)\]
\[y = - \frac{\pi}{3} \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\]
Here
\[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] is the range of the principal value branch of inverse sine function.
∴ `sin^-1(-sqrt3/2)=-pi/3`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
`sin^-1(sin pi/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sin^-1 7/25)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cot{sec^-1(-13/5)}`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the domain of `sec^(-1) x-tan^(-1)x`