हिंदी

The Value of Cos − 1 ( Cos 5 π 3 ) + Sin − 1 ( Sin 5 π 3 ) is (A) π 2 (B) 5 π 3 (C) 10 π 3 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 

विकल्प

  • `pi/2`

  • `(5pi)/3`

  • `(10pi)/3`

  • 0

MCQ

उत्तर

(d) 0

We have
\[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right) = \cos^{- 1} \left\{ \cos\left( 2\pi - \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ \sin\left( 2\pi - \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ - \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} - \sin^{- 1} \left\{ \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3} - \frac{\pi}{3}\]
\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 20 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×