Advertisements
Advertisements
प्रश्न
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
उत्तर
`cos^-1(cos (2x)/3)+sin^-1(sin (2x)/3)`
`cos^-1(cos (2x)/3)+sin^-1{sin(pi/3)}` `[because "Range of sine is"[-pi/2, pi/2]; pi/3in [-pi/2,pi/2] "and range of cosine is" [0,pi] ; (2pi)/3in [0, pi]]`
`=(2pi)/3+pi/3`
= π
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`tan^-1 2/3=1/2tan^-1 12/5`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 (cos 6).
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If sin−1 x − cos−1 x = `pi/6` , then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
Find the value of `sin^-1(cos((33π)/5))`.