हिंदी

What is the Value of Cos−1 `(Cos (2x)/3)+Sin^-1(Sin (2x)/3)?` - Mathematics

Advertisements
Advertisements

प्रश्न

What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`

उत्तर

`cos^-1(cos  (2x)/3)+sin^-1(sin  (2x)/3)`

`cos^-1(cos  (2x)/3)+sin^-1{sin(pi/3)}`         `[because "Range of sine is"[-pi/2, pi/2]; pi/3in  [-pi/2,pi/2] "and range of cosine is" [0,pi] ; (2pi)/3in [0, pi]]`

`=(2pi)/3+pi/3`

= π

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 8 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`tan^-1  2/3=1/2tan^-1  12/5`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos−1 (cos 6).


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If sin−1 − cos−1 x = `pi/6` , then x = 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×