Advertisements
Advertisements
प्रश्न
`sin^-1{(sin - (17pi)/8)}`
उत्तर
We know
`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`
We have
`sin^-1(sin - (17pi)/8)sin^-1(-sin (17pi)/8)`
`=sin^-1{-sin(2pi+pi/8)}`
`=sin^-1(-sin pi/8)`
`=sin^-1(sin-pi/8)`
`=-pi/8`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`sin(sec^-1 17/8)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`