English

`Sin^-1(Sin - (17pi)/8)` - Mathematics

Advertisements
Advertisements

Question

`sin^-1{(sin - (17pi)/8)}`

Sum

Solution

We know

`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`

We have

`sin^-1(sin - (17pi)/8)sin^-1(-sin  (17pi)/8)`

`=sin^-1{-sin(2pi+pi/8)}`

`=sin^-1(-sin  pi/8)`

`=sin^-1(sin-pi/8)`

`=-pi/8`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 1.06 | Page 42

RELATED QUESTIONS

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×