Advertisements
Advertisements
Question
`sin^-1{(sin - (17pi)/8)}`
Solution
We know
`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`
We have
`sin^-1(sin - (17pi)/8)sin^-1(-sin (17pi)/8)`
`=sin^-1{-sin(2pi+pi/8)}`
`=sin^-1(-sin pi/8)`
`=sin^-1(sin-pi/8)`
`=-pi/8`
APPEARS IN
RELATED QUESTIONS
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The period of the function f(x) = tan3x is ____________.