Advertisements
Advertisements
Question
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Solution
Let `a = btan m and x = ytan n`
Then,
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=2/3tan^-1((3b^3tanm-b^3tan^3m)/(b^3-3b^3tan^2m))+2/3tan^-1((3y^3tann-y^3tan^3n)/(y^3-3y^3tan^2n))`
`=2/3tan^-1((3tanm-tan^3m)/(1-3tan^2m))+2/3tan^-1((3tann-tan^3n)/(1-3tan^2n))`
`=2/3tan^-1(tan3m)+2/3tan^-1(tan3n)` `[because tan3x=(3tanx-tan^3x)/(1-3tan^2x)]`
`=2/3(3m)+2/3(3n)`
`=2m+2n`
`=2(tan^-1 a/b+tan^-1 x/y)` `[because a=btanm, x=ytann]`
`=2tan^-1((a/b+x/y)/(1-a/b x/y))`
`=2tan^-1((ay+bx)/(by-ax))`
`=tan^-1{(2(ay+bx)/(by-ax))/(1-((ay+bx)/(by-ax))^2)}`
`=tan^-1{(2(ay+bx)(by-ax))/((by-ax)^2-(ay+bx)^2)}`
`=tan^-1{(2alphabeta)/(alpha^2-beta^2)}` `[becausealpha=ay+bxandalpha=by-ax]`
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(cos^-1 5/13)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the value of `sin^-1(cos((33π)/5))`.