English

Evaluate Sin - Mathematics

Advertisements
Advertisements

Question

Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]

Solution

We know that

\[\tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]

\[\therefore \sin\left( \tan^{- 1} \frac{3}{4} \right) = \sin\left\{ \sin^{- 1} \left( \frac{\frac{3}{4}}{\sqrt{1 + \frac{9}{16}}} \right) \right\}\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{3}{4}}{\frac{5}{4}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{3}{5} \right)\]
\[ = \frac{3}{5} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]

∴ \[\sin\left( \tan^{- 1} \frac{3}{4} \right) = \frac{3}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 18 | Page 117

RELATED QUESTIONS

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `sin^-1(-1/2)`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If sin−1 − cos−1 x = `pi/6` , then x = 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×