English

Evaluate the Following: `Sec^-1(Sec (5pi)/4)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`sec^-1(sec  (5pi)/4)`

Solution

We know that

sec-1 (sec θ) = θ,    [0, π/2) ∪ (π/2, π]

 We have 

`sec^-1(sec  (5pi)/4)=sec^-1[sec(2pi-(3pi)/4)]`

`=sec^-1[sec((3pi)/4)]`

`=(3pi)/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 4.3 | Page 42

RELATED QUESTIONS

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cot{sec^-1(-13/5)}`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×