English

Prove the following result- tan-1 6316=(sin-1 513+cos-1 35) - Mathematics

Advertisements
Advertisements

Question

Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`

Sum

Solution

Let a = `sin^-1  5/13` b = `cos^-1  3/5`

Let a = `sin^-1  5/13`

We know that

cos a = `sqrt(1 - sin^2 "a")`

`= sqrt(1 - (5/13)^2)`

`= sqrt(144/169)`

`= 12/13`

Let b = `cos^-1  3/5`

cos b = `3/5`

We know that

sin b = `sqrt(1 - cos^2 "b")`

`= sqrt(1 - (3/5)^2)`

`= sqrt(16/25)`

`= 4/5`

Now, 

tan a = `(sin a)/(cos a)`

`= (5/13)/(12/13)`

`= 5/13 xx 13/12`

`= 5/12`

tan b = `(sin b)/(cos b)`

`= (4/5)/(3/5)`

`= 4/5 xx 5/3`

`= 4/3`

Now we know that

tan (a + b) = `(tan a + tan b)/(1 - tan a  tan b)`

Putting tan a = `5/12` and tan b = `4/3`

tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`

tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`

= `((15 + 48)/36)/((36 - 20)/36)`

= `(63/36)/(16/36)`

= `63/36 xx 36/16`

= `63/16`

Thus, tan (a + b) = `63/16`

a + b = `tan^-1 (63/16)`

Putting values of a and b

`sin^-1  5/13 + cos^-1  3/5 = tan^-1  (63/16)`

Hence L.H.S = R.H.S

Hence Proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.08 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.3 | Page 54

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The period of the function f(x) = tan3x is ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×