Advertisements
Advertisements
Question
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Solution
Let a = `sin^-1 5/13` b = `cos^-1 3/5`
Let a = `sin^-1 5/13`
We know that
cos a = `sqrt(1 - sin^2 "a")`
`= sqrt(1 - (5/13)^2)`
`= sqrt(144/169)`
`= 12/13`
Let b = `cos^-1 3/5`
cos b = `3/5`
We know that
sin b = `sqrt(1 - cos^2 "b")`
`= sqrt(1 - (3/5)^2)`
`= sqrt(16/25)`
`= 4/5`
Now,
tan a = `(sin a)/(cos a)`
`= (5/13)/(12/13)`
`= 5/13 xx 13/12`
`= 5/12`
tan b = `(sin b)/(cos b)`
`= (4/5)/(3/5)`
`= 4/5 xx 5/3`
`= 4/3`
Now we know that
tan (a + b) = `(tan a + tan b)/(1 - tan a tan b)`
Putting tan a = `5/12` and tan b = `4/3`
tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`
tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`
= `((15 + 48)/36)/((36 - 20)/36)`
= `(63/36)/(16/36)`
= `63/36 xx 36/16`
= `63/16`
Thus, tan (a + b) = `63/16`
a + b = `tan^-1 (63/16)`
Putting values of a and b
`sin^-1 5/13 + cos^-1 3/5 = tan^-1 (63/16)`
Hence L.H.S = R.H.S
Hence Proved.
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The period of the function f(x) = tan3x is ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`