Advertisements
Advertisements
Question
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Solution
`cot(sin^-1 3/4+sec^-1 4/3)`
`=cot(sin^-1 3/4 + cos^-1 3/4)` `[thereforesec^-1x=cos^-1 1/x]`
`=cot(pi/2)` `[thereforesin^-1x+cos^-1x=pi/2]`
= 0
APPEARS IN
RELATED QUESTIONS
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If tan−1 (cot θ) = 2 θ, then θ =
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`