English

Write the Value of Cos − 1 ( − 1 2 ) + 2 Sin − 1 ( 1 2 ) . - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .

Solution

For any x ∈ [−1, 1], cos−1x represents an angle in [0, \[\pi]\] whose cosine is x.

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right)\] =any angle in [0, \[\pi\]] whose cosine is \[- \frac{1}{2}\] .

\[\Rightarrow \cos^{- 1} \left( - \frac{1}{2} \right) = \frac{2\pi}{3}\]

Similarly,

\[\sin^{- 1} \left( \frac{1}{2} \right)\] = an angle in \[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] whose sine is \[\frac{1}{2}\] . 

\[\Rightarrow \sin^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{6}\]

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] =

\[\frac{2\pi}{3} + 2\left( \frac{\pi}{6} \right) = \frac{4\pi + 2\pi}{6} = \pi\]

Hence,

\[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \pi\] .

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

RELATED QUESTIONS

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (13pi)/7)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`tan{cos^-1(-7/25)}`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×