English

Solve the Following: `Sin^-1x+Sin^-1 2x=Pi/3` - Mathematics

Advertisements
Advertisements

Question

Solve the following:

`sin^-1x+sin^-1  2x=pi/3`

Solution

We know

`sin^-1x+sin^-1y=sin^-1[xsqrt(1-y^2)+ysqrt(1-x^2)]`

∴ `sin^-1x+sin^-1  2x=pi/3`

⇒ `sin^-1x+sin^-1  2x=sin^-1(sqrt3/2)`

⇒ `sin^-1x-sin^-1(sqrt3/2)=-sin^-1  2x`

⇒ `sin^-1[xsqrt(1-3/4)+sqrt3/2sqrt(1-x^2)]=-sin^-1  2x`

⇒ `sin^-1[x/2+sqrt3/2sqrt(1-x^2)]=sin^-1(-2x)`

⇒ `x/2+sqrt3/2sqrt(1-x^2)=-2x`

⇒ `x+sqrt3sqrt(1-x^2)=-4x`

⇒ `5x=-sqrt3sqrt(1-x^2)`

Squaring both the sides,

`25x^2=3-3x^2`

⇒ `28x^2=3`

⇒ `x=+-1/2sqrt(3/7)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.12 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 3.1 | Page 89

RELATED QUESTIONS

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  2/3=1/2tan^-1  12/5`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the range of tan−1 x.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos−1 (cos 6).


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×