English

`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3` - Mathematics

Advertisements
Advertisements

Question

`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`

Solution

`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`

LHS = `(9pi)/8-9/4sin^-1  1/3`

`=9/4(pi/2-sin^-1  1/3)`

`=9/4(cos^-1  1/3)`

`=9/4(sin^-1sqrt(1-1/9))`

`=9/4(sin^-1  (2sqrt2)/3)=` RHS


shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.12 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 2.3 | Page 89

RELATED QUESTIONS

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1) x-tan^(-1)x`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×