Advertisements
Advertisements
Question
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solution
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
∴ `tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3`
⇒ `tan^-1((2+x+2-x)/(1-(2+x)xx(2-x)))=tan^-1 2/3`
⇒ `4/(1-4+x^2)=2/3`
⇒ `-6+2x^2=12`
⇒ `2x^2=18`
⇒ `x^2=9`
⇒ `x=+-3`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Solve: `cos(sin^-1x)=1/6`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin (cot−1 x).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`