Advertisements
Advertisements
Question
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Solution
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
When `x<0,1/x<0,` then both are negative.
Let x = -y, y > 0
Then,
`tan^-1x+tan^-1 1/x=tan^-1 (-y)+tan^-1(-1/y)`
`=-(tan^-1y+tan^-1 1/y)`
`=-tan^-1((y+1/y)/(1-y1/y)), y>0`
`=-tan^-1((y^2+1)/0)`
`=-tan^-1(oo)`
`=-tan^-1(tan pi/2)`
`=pi/2`
`thereforetan^-1x+tan^-1 1/x=-pi/2, x<0`
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]