English

If `Sin^-1x+Sin^-1y+Sin^-1z=(3pi)/2,` Then Write the Value Of X + Y + Z. - Mathematics

Advertisements
Advertisements

Question

If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.

Solution

`sin^-1x+sin^-1y+sin^-1z=(3pi)/2`

`=>sin^-1x+sin^-1y+sin^-1z=pi/2+pi/2+pi/2`     [As the maximum value in the range of `sin^-1x    is  pi/2`   And here sum of three inverse of sine is 3 times  `pi/2`.  i.e., every sin inverse function is equal to  `pi/2` here.]

`=>sin^-1x=pi/2,sin^-1y=pi/2andsin^-1z=pi/2`

`=>x=1,y=1andx=1`

`thereforex+y+z=1+1+1=3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 3 | Page 116

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×