Advertisements
Advertisements
Question
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Solution
`sin^-1x+sin^-1y+sin^-1z=(3pi)/2`
`=>sin^-1x+sin^-1y+sin^-1z=pi/2+pi/2+pi/2` [As the maximum value in the range of `sin^-1x is pi/2` And here sum of three inverse of sine is 3 times `pi/2`. i.e., every sin inverse function is equal to `pi/2` here.]
`=>sin^-1x=pi/2,sin^-1y=pi/2andsin^-1z=pi/2`
`=>x=1,y=1andx=1`
`thereforex+y+z=1+1+1=3`
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`