English

Write the Value of \Cos1\Left(\Frac12\Right)+2\Sin1\Left(\Frac12\Right). - Mathematics

Advertisements
Advertisements

Question

Write the value of

cos1(12)+2sin1(12).

Solution

We have

cos112+2sin112
=cos1(cosπ3)+2sin1(sinπ6)

[The range of sine is[-π2,π2]; π6[-π2,π2]and the range of cosine is [0,π]; π3 [0,π]]
=π3+2(π6)
=π3+π3
=2π3

cos1(12)+2sin1(12)=2π3

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 11 | Page 117

RELATED QUESTIONS

​Find the principal values of the following:
cos-1(-32)


​Find the principal values of the following:

cos-1(sin  4π3)


sin-1(sin 7π6)


sin-1(sin 5π6)


Evaluate the following:

tan-1(tan12)


Evaluate the following:

sec-1(sec 13π4)


Evaluate the following:

cosec-1(cosec 11π6)


Evaluate the following:

cosec-1(cosec 13π6)


Evaluate the following:

cot-1{cot(-8π3)}


Write the following in the simplest form:

tan-1{1+x2-x},xR


Write the following in the simplest form:

sin-1{x+1-x22},-1<x<1


Write the following in the simplest form:

sin{2tan-11-x1+x}


Evaluate the following:

sin(cos-1 513)


Evaluate the following:

cos(tan-1 247)


Evaluate:

sec{cot-1(-512)}


Evaluate:

tan{cos-1(-725)}


Evaluate:

cosec{cot-1(-125)}


If cot(cos-1 35+sin-1x)=0, find the values of x.


If (sin-1x)2+(cos-1x)2=17π236,  Find x


Prove the following result:

tan-1 17+tan-1 113=tan-1 29


Prove the following result:

sin-1 1213+cos-1 45+tan-1 6316=π


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

tan−1(1-x1+x)-12 tan−1x = 0, where x > 0


If cos-1 x2+cos-1 y3=α, then prove that  9x2-12xycosa+4y2=36sin2a.


Evaluate the following:

tan{2tan-1 15-π4}


2tan-1 15+tan-1 18=tan-1 47


Prove that

tan-1(1-x22x)+cot-1(1-x22x)=π2


Solve the following equation for x:

2tan-1(sinx)=tan-1(2sinx),xπ2


For any a, b, x, y > 0, prove that:

23tan-1(3ab2-a3b3-3a2b)+23tan-1(3xy2-x3y3-3x2y)=tan-1 2αβα2-β2

where α=-ax+by,β=bx+ay


Write the value of tan1 x + tan−1 (1x)  for x < 0.


If tan−1 x + tan−1 y = π4,  then write the value of x + y + xy.


Wnte the value of the expression tan(sin1x+cos1x2), when x=32


Find the value of cos1(cos13π6)


The value of tan {cos1152sin1417} is

 


tan1111+tan1211  is equal to

 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Write the value of cos1(12)+2sin1(12) .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.