Advertisements
Advertisements
Question
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
Options
`sqrt29/3`
`29/3`
`sqrt3/29`
`3/29`
Solution
(d) `3/29`
\[\text{ Let }, \cos^{- 1} \frac{1}{5\sqrt{2}} = y \text{ and } \sin^{- 1} \frac{4}{\sqrt{17}} = z\]
\[\therefore \cos{y} = \frac{1}{5\sqrt{2}} \Rightarrow \sin{y} = \frac{7}{5\sqrt{2}} \Rightarrow \tan{y} = 7\]
\[\sin{z} = \frac{4}{\sqrt{17}} \Rightarrow \cos{z} = \frac{1}{\sqrt{17}} \Rightarrow \tan{z} = 4\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}{1 + \tan{y} \tan{z}}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}1 + \tan{y} \tan{z}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.