English

The Value of Tan { Cos − 1 1 5 √ 2 − Sin − 1 4 √ 17 } is (A) √ 29 3 (B) 29 3 (C) √ 3 29 (D) 3 29 - Mathematics

Advertisements
Advertisements

Question

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 

Options

  • `sqrt29/3`

  • `29/3`

  • `sqrt3/29`

  • `3/29`

MCQ

Solution

(d) `3/29`

\[\text{ Let }, \cos^{- 1} \frac{1}{5\sqrt{2}} = y \text{ and } \sin^{- 1} \frac{4}{\sqrt{17}} = z\]
\[\therefore \cos{y} = \frac{1}{5\sqrt{2}} \Rightarrow \sin{y} = \frac{7}{5\sqrt{2}} \Rightarrow \tan{y} = 7\]
\[\sin{z} = \frac{4}{\sqrt{17}} \Rightarrow \cos{z} = \frac{1}{\sqrt{17}} \Rightarrow \tan{z} = 4\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}{1 + \tan{y} \tan{z}}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}1 + \tan{y} \tan{z}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 2 | Page 120

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×