मराठी

The Value of Tan { Cos − 1 1 5 √ 2 − Sin − 1 4 √ 17 } is (A) √ 29 3 (B) 29 3 (C) √ 3 29 (D) 3 29 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 

पर्याय

  • `sqrt29/3`

  • `29/3`

  • `sqrt3/29`

  • `3/29`

MCQ

उत्तर

(d) `3/29`

\[\text{ Let }, \cos^{- 1} \frac{1}{5\sqrt{2}} = y \text{ and } \sin^{- 1} \frac{4}{\sqrt{17}} = z\]
\[\therefore \cos{y} = \frac{1}{5\sqrt{2}} \Rightarrow \sin{y} = \frac{7}{5\sqrt{2}} \Rightarrow \tan{y} = 7\]
\[\sin{z} = \frac{4}{\sqrt{17}} \Rightarrow \cos{z} = \frac{1}{\sqrt{17}} \Rightarrow \tan{z} = 4\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}{1 + \tan{y} \tan{z}}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}1 + \tan{y} \tan{z}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 2 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the range of tan−1 x.


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×