Advertisements
Advertisements
प्रश्न
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
उत्तर
sin−1 `((2x)/(1+x^2))`
= π - 2 tan-1 x `[because2tan^-1x=pi-sin^-1((2x)/(1+x^2)) "for" x>1]`
APPEARS IN
संबंधित प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the range of tan−1 x.
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
What is the principal value of `sin^-1(-sqrt3/2)?`
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to