Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sin(sin^-1 7/25)`
उत्तर
`sin(sin^-1 7/25)=7/25`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
The set of values of `\text(cosec)^-1(sqrt3/2)`
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the value of `sin^-1(cos((33π)/5))`.