मराठी

Prove that `2tan^-1(Sqrt((A-b)/(A+B))Tan Theta/2)=Cos^-1((A Costheta+B)/(A+B Costheta))` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`

उत्तर

LHS = `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan  theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan  theta/2)^2)}`     `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`

`=cos^-1{(1-(a-b)/(a+b)tan^2  theta/2)/(1+(a-b)/(a+b)tan^2  theta/2)}`

`=cos^-1{((a+b)-(a-b)tan^2  theta/2)/((a+b)+(a-b)tan^2  theta/2)}`

`=cos^-1{(a+b-atan^2  theta/2+btan^2  theta/2)/(a+b+atan^2  theta/2-btan^2  theta/2)}`

`=cos^-1{(a(1-tan^2  theta/2)+b(1+tan^2  theta/2))/(a(1+tan^2  theta/2)+b(1-tan^2  theta/2))}`

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b((1+tan^2  theta/2)/(1+tan^2theta/2)))/(a((1+tan^2  theta/2)/(1+tan^2  theta/2))+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`       `["Dividing"   N^r and D^r  by  1+tan^2  theta/2]` 

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b)/(a+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`

`=cos^-1{(acos  theta+b)/(a+bcostheta)}`=RHS

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 9 | पृष्ठ ११६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos−1 (cos 1540°).


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×