Advertisements
Advertisements
प्रश्न
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
उत्तर
LHS = `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan theta/2)^2)}` `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`
`=cos^-1{(1-(a-b)/(a+b)tan^2 theta/2)/(1+(a-b)/(a+b)tan^2 theta/2)}`
`=cos^-1{((a+b)-(a-b)tan^2 theta/2)/((a+b)+(a-b)tan^2 theta/2)}`
`=cos^-1{(a+b-atan^2 theta/2+btan^2 theta/2)/(a+b+atan^2 theta/2-btan^2 theta/2)}`
`=cos^-1{(a(1-tan^2 theta/2)+b(1+tan^2 theta/2))/(a(1+tan^2 theta/2)+b(1-tan^2 theta/2))}`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b((1+tan^2 theta/2)/(1+tan^2theta/2)))/(a((1+tan^2 theta/2)/(1+tan^2 theta/2))+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}` `["Dividing" N^r and D^r by 1+tan^2 theta/2]`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b)/(a+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}`
`=cos^-1{(acos theta+b)/(a+bcostheta)}`=RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos−1 (cos 1540°).
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.