मराठी

Prove That: `Tan^-1 (2ab)/(A^2-b^2)+Tan^-1 (2xy)/(X^2-y^2)=Tan^-1 (2alphabeta)/(Alpha^2-beta^2),` Where `Alpha=Ax-by And Beta=Ay+Bx.` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy)),xy>1`

`thereforetan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1(((2ab)/(a^2-b^2)+(2xy)/(x^2-y^2))/(1-(2ab)/(a^2-b^2)  (2xy)/(x^2-y^2)))`

`=tan^-1(((2(abx^2-aby^2+xya^2-xyb^2))/((a^2-b^2)(x^2-y^2)))/((a^2x^2-a^2y^2-x^2b^2+y^2b^2-4abxy)/((a^2-b^2)(x^2-y^2))))`

`=tan^-1((2(abx^2-aby^2+xya^2-xyb^2))/(a^2x^2-a^2y^2-x^2b^2+y^2b^2-2abxy))`

`=tan^-1((2(ax-by)(ay+bx))/((ax-by)^2-(ay+bx)^2))`

`=tan^-1((2alphabeta)/(alpha^2-beta^2))`    `[because alpha=ax-by  and  beta = ay+bx]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 10 | पृष्ठ ११६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×