Advertisements
Advertisements
प्रश्न
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
उत्तर
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy)),xy>1`
`thereforetan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1(((2ab)/(a^2-b^2)+(2xy)/(x^2-y^2))/(1-(2ab)/(a^2-b^2) (2xy)/(x^2-y^2)))`
`=tan^-1(((2(abx^2-aby^2+xya^2-xyb^2))/((a^2-b^2)(x^2-y^2)))/((a^2x^2-a^2y^2-x^2b^2+y^2b^2-4abxy)/((a^2-b^2)(x^2-y^2))))`
`=tan^-1((2(abx^2-aby^2+xya^2-xyb^2))/(a^2x^2-a^2y^2-x^2b^2+y^2b^2-2abxy))`
`=tan^-1((2(ax-by)(ay+bx))/((ax-by)^2-(ay+bx)^2))`
`=tan^-1((2alphabeta)/(alpha^2-beta^2))` `[because alpha=ax-by and beta = ay+bx]`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin3)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos{sin^-1(-7/25)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.