मराठी

Solve for x: 2tan^−1(cosx)=tan^−1(2cosecx) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`

उत्तर

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`

`=>tan^(-1)((2cosx)/(1-cos^2x))=tan^(-1)(2"cosec" x) ""[because 2tan^(-1)x=tan^(-1)(2x/(1-x^2))]`

`=>(2cosx)/(sin^2x) = 2"cosec" x`

`=>(cosx)/(sin^2x) = 1/sinx`

`=>(sinx)/(cosx) = 1`

`=>tanx = 1`

`=> x=pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×